

Level-0 Calorimeter and L1 Global Triggers WBS 6.8.y.1 and 6.8.y.3

Wade Fisher

Michigan State University

U.S. ATLAS HL-LHC Upgrade NSF Conceptual Design Review

Arlington, VA March 8-10, 2016

Outline

- System experts and Principle Investigators
- System Overview
 - Current (Run-2) System, Phase-1 upgrade and Motivation for Upgrade
 - ATLAS Upgrade Plans
- Proposed U.S. HL-LHC Upgrade Scope
 - Work Breakdown Structure and Contributing Institutes
 - U.S. Deliverables
- Ongoing R&D
 - Plans to Construction Project
 - Funding Needed
- Construction Project Management
 - Construction Project Budget and Schedule
 - Risks and Mitigation
- Closing Remarks

About the Expert

- Wade Fisher, Associate Professor, Michigan State University
 - Member of ATLAS collaboration and TDAQ group since 2012
 - L3 manager for Phase 1 upgrade project: FEX ATCA Hub module
 - MSU also built and commissioned Phase 0 upgrade L1Calo module:
 Common Merger Module Extended (CMX)
 - MSU Engineers Dan Edmunds, Philippe Laurens, Yuri Ermoline, Pawel Plucinski

Additional Primary Contributions

- Sizable list of TDAQ experts with significant upgrade experience have contributed to this project proposal
- L0 Calo: Reinhard Schwienhorst (MSU), Hal Evans (Indiana)
- L1 Global: WF (MSU), Stephanie Majewski (Oregon), Elliot Lipeles (Penn)

About the Institutes

Institutes involved

- Michigan State University
- University of Chicago
- Indiana University
- University of Oregon
- Louisiana Tech University
- University of Pittsburg
- Extensive history of HEP construction effort for all institutes
 - TDAQ: MSU, Indiana, Chicago
 - TRT: Indiana
 - Muons: Pitt,
 - TileCal: Chicago, MSU
 - LAr: Pitt,
 - FTK: Chicago
 - Nearly all groups have non-ATLAS construction experience

Phase 1 Upgrade Overview

HL-LHC System Upgrade Plans

Two-level hardware system

- Phase-1 L1 system becomes HL-LHC L0 system
- High precision Muons (MDT) added to L0 system → improves efficiency
- L0 Rate is now 1 MHz
 - Allows in more physics
- L1 system uses tracks and full granularity calo in regions of interest to improve reject before HLT
 - Tracking 10% of data at 1 MHz
- Full detector tracking for 100 KHz events in HLT → mitigates pile-up for hadronic triggers

HL-LHC System Upgrade Plans

Level-0 Calorimeter Trigger

- Phase-1 L1 system becomes HL-LHC L0 system
- Tile input to LOCalo will be new digital input from Tile preprocessor
- New Tile Optical Plant needed for new Tile front-end electronics mapping / interface
 - Builds on existing optical plant experience and design.

HL-LHC System Upgrade Plans

Level-1 Global Trigger

- L1 Global system aggregates inputs from Calo, Muon and Track triggers
- Processes fine-granularity calorimeter inputs for improved siganatures
- Evaluates combined trigger algorithms using 'global' information
- Proposed NSF scope focuses on current US hadronic trigger experience to support processor algorithm design
 - Energy clustering and jet identification
 - Global calorimeter quantities (MET, HT)
 - Track-based pileup rejection

Proposed NSF Scope

- 6.8.y.1 L0 Calo Optical Plant
 - Rebuild fiber optic input router because of changes to tile inputs
 - MSU is building Phase-1 system this capitalizes on their unique expertise
 - Institutes: Michigan State (MSU)
- 6.8.y.3 L1 Global Processing
 - L1 Global algorithms are where the rate reduction from 1 MHz to 400 KHz happens
 - 4 firmware algorithms focused on hadronic triggering:
 - Offline-like energy clustering and jet construction, global quantities (MET, HT), and track-based pile-up rejection
 - This builds on US experience with Phase-1 "gFEX" system which does global hadronic triggering in what will be L0
 - Institutes: U Chicago, Indiana U., Louisiana Tech, Michigan State, U Oregon, U Pittsburgh

6.8.y.1: L0 Calo Fiber Optic Plant

 Rebuild the Phase 1 Fiber Optic plant to accommodate the change to the tile electronics

Builds on unique MSU experience with fiber routing and

splitting

FOX – Fiberplant

- Phase 1 Deliverable: Fiber-Optic eXchange (FOX)
 - Project underway at MSU
 - Well-understood technical challenges

optical plant

Version-1 Optical Fiber Plant

6.8.y.3: L1 Global Processing

- Deliverable is firmware that runs on the L1 Global Processor
 - The focus is on hadronic triggering with 4 related items
 - Offline-like "topological clustering" of calorimeter energy
 - Offline-like jet finding
 - Global quantities: Missing energy, sum of jet pTs (HT), and MHT
 - Track-based pile-up rejection for multijet and global quantities
- Follows Phase 1 experience with the gFEX system
 - gFEX is global quantities and fat-jets at what will be LO in HL-LHC

Ongoing R&D Efforts

- R&D Efforts underway using pre-MREFC funding
- 6.8.y.1: LOCalo Optical Plant
 - Phase-1 L1Calo optical plant R&D effort eliminates need for dedicated Phase-2 R&D effort.
 - Highly similar design to be implemented by the same PI/engineers
- 6.8.y.3: L1Global Algorithms
 - Current experiences with Phase-1 gFEX algorithm development useful
 - Studies of global quantities, jet substructure, large-R jet pileup subtraction
 - Dedicated R&D studies of topological clustering algorithms underway
 - Characterizing clustering algorithm limitations on FPGA targets
 - Latency/resource/resolution studies help guide hardware and algorithm choices
 - Same engineers expected to contribute to Phase-2 efforts

Budget Estimation

- WBS 6.8.y.1: LOCalo Optical Plant
 - Primarily based on current Phase-1 Fiber Optic Exchange module
 - Well-understood technical scope and costs
 - Phase-1 experiences will reduce overall risk to both schedule and cost
- WBS 6.8.y.3: L1Global Firmware Algorithms
 - Based on current Phase-1 gFEX algorithm development
 - Highly similar to other ongoing or completed projects as well
 - (L1Calo gFEX module: Global Feature Extractor)
 - Similar level of complexity and schedule demands
 - Expert-level estimation for anticipated differences wrt gFEX

Cost Tables: LOCalo

 LOCalo Optical Plant costing developed via direct analogy to the ongoing Phase-1 optical plant project

6.8.x.1 L0Calo									
WBS	WBSDescriptionLaborLaborM&STravelTOTAyk\$Ayk\$Ayk\$Ayk\$Ayk\$								
6.8.x.1	L0Calo	0.75	119	49	19	187			
	Engineers	0.75							
	Techs	-							
	Students	-				-			
		-							

Task Name	Effort (person-months)	Calendar Duration (months)
Engineering Specification	1	6
Design	2	6
Assembly	1	9
Acceptance Tests	2	9
System Tests	2	6
Project Review Preparation	1	12
Project Total:	9 (0.75 FTE)	36 (total duration)

Item	Cost per item	# of items	Total cost
MTP cable	\$150	120	\$18,000
MTP breakout cable	\$100	12	\$1,200
Mapping module	\$5,500	5	\$27,500
Enclosure	\$1000	1	\$1,000
Misc parts			\$1,300
Total			\$49,000

Cost Tables: L1Global

- L1Global costing based on effort required for similar firmware algorithms in the ongoing Phase 1 gFEX FW project
 - Labor divided amongst six universities

6.8.x.3 L1 Global Processing										
WBS	WBS Description FTE Ayk\$ Ayk\$ Ayk\$									
6.8.x.3	L1 Global	8.75	1,896	125	82	2,103				
	Engineers	8.75								
	Techs	-								
	Students	-								

Cost Tables: WBS 6.8 Trigger

6.8 Trigger NSF FTEs							
Item/Phase	FY20	FY21	FY22	FY23	FY24	Grand Total	
6.8.y.1 L0 Calo	-	0.25	0.42	0.08	-	0.75	
Design	-	0.25	-	-	-	0.25	
Prototype	-	-	-	-	-	-	
Pre-production	-	-	-	-	-	-	
Production	-	-	0.42	0.08	-	0.50	
6.8.y.3 L1 Global Processing	1.25	2.50	2.50	2.50	-	8.75	
Design	-	-	-	-	-	-	
Prototype	1.25	-	-	-	-	1.25	
Pre-production	-	2.50	-	-	-	2.50	
Production	-	-	2.50	2.50	-	5.00	
NSF Grand Total	1.25	2.75	2.92	2.58	-	9.50	

6.8 Trigger NSF Total Cost (AYk\$)							
Item/Phase	FY20	FY21	FY22	FY23	FY24	Total	
6.8.y.1 L0 Calo	0	43	126	19	0	187	
Design	0	43	0	0	0	43	
Prototype	0	0	0	0	0	0	
Pre-production	0	0	0	0	0	0	
Production	0	0	126	19	0	144	
6.8.y.3 L1 Global Processing	337	611	569	586	0	2,103	
Design	0	0	0	0	0	0	
Prototype	337	0	0	0	0	337	
Pre-production	0	611	0	0	0	611	
Production	0	0	569	586	0	1,155	
NSF Grand Total	337	653	695	605	0	2,290	

Risks

General sources of risk

- Changes/delays in system requirements or sub-system interfaces LOCalo
 Primary Risks:
 - Delays in finalizing up/downstream interfaces: specifically new TileCal interface
 - Late changes in specification: # links, optical splitting, etc
- L1Global Primary Risks:
 - Performance of available FPGAs or other processors different than expected
 - Trigger performance requirements evolve late in development cycle

Mitigation

- Schedules are designed to absorb moderate delays
 - Development can proceed in areas not impacted by final specifications
 - In extreme cases, moderate additional effort can be added
- Performance issues can be handled by reducing target efficiencies if necessary
 - Ongoing R&D efforts front-load engineering experience with hardware
 - Algorithm performance expected to be adjustable to meet performance needs

Closing Remarks

- US Deliverables
 - 6.8.y.1 LO Calo fiber optic plant for new tile output
 - 6.8.y.3 L1 Global Processing algorithms for hadronic objects
- This package with have a high impact on the ability of ATLAS to maintain low threshold single lepton and hadronic triggers
 - Significant coherence of calorimeter trigger projects with US project as a whole in Phase-1 and HL-LHC upgrades
- Budget and Planning are based on Phase-1 experience
 - Ongoing Phase-1 optical plant and firmware efforts are highly similar in scope and complexity

Backup